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SUMMARY 
A numerical study of natural convection melting of a phase change material within an isothermal vertical 
cylinder was conducted. The governing conservation equations are formulated in terms of a stream function, 
vorticity and temperature. Body-fitted co-ordinates are employed for tracking the irregular shape of the 
timewise changing solid-liquid phase front. Results show that the convective flow patterns and time 
evolution of the phase front, resulting from simultaneous bottom, side and top heating, are far more 
complicated than those for the melting from a single isothermal boundary. The heat transfer rate at the top 
surface is found to decrease monotonically to zero as convection is fully developed in the melt. The highest 
heat transfer rates are observed at the bottom surface where Benard convective cells develop. Due to the 
convective motion of the melt along the vertical heated wall, the onset of Btnard convection occurs at 
a much earlier time than that for the case of melting within a cylinder heated from below. 
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INTRODUCTION 

Over the last decade, solid-liquid phase change in cylindrical enclosures with natural convection 
in the liquid phase has received increasing research attention due to its applications to latent heat 
of fusion energy storage systems. During the period of storage, a working fluid flows around the 
cylindrical capsule containing the Phase Change Material (PCM) and heat is transferred to the 
PCM. Soon the PCM reaches its fusion temperature and melting is triggered. The liquid 
produced during the melting process is non-uniform in temperature and so natural convection 
motions occur. In many cases, the buoyancy driven motions become strong enough to rule the 
melting process. During the period of heat extraction, the PCM releases heat back to the working 
fluid by solidifying. 

Several authors have tackled the problem of natural convection dominated melting inside 
a horizontal tube'-6 and inside a horizontal cylindrical annulus.' The melting process was 
investigated analytically and experimentally for a wide range of thermal conditions and melting 
scenarios. Relatively fewer studies are devoted, however, to the problem of melting inside vertical 
cylindrical enclosures. Sparrow et a1.' carried out experiments on the melting of a PCM in 
a vertical isothermal tube. The upper surface of the PCM was bounded by an insulated air space. 
Numerical solutions based on a pure conduction model were also performed for comparison 
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purposes. It was found that the experimentally determined values of the energy transfer asso- 
ciated with the melting process were about 50 per cent higher than those predicted by the 
conduction model. These results provided conclusive evidence that natural convection heat 
transfer in the liquid controls the rate of melting and the shape of the solid-liquid interface. 

More recently, Prud'homme et aL9 presented a numerical study of melting within a vertical 
cylindrical enclosure heated at a constant temperature from below. Results showed that the shape 
and the motion of the solid-liquid interface are strongly perturbed by the time-dependent 
multicellular convective flow patterns which develop at the bottom of the enclosure. The Nusselt 
number at the bottom wall also exhibited strong local variations which are closely related to the 
evolution of the cell patterns. 

The purpose of the present study is to investigate numerically natural convection dominated 
melting of a PCM within a vertical isothermal capsule. This is a challenging problem as melting is 
triggered from simultaneous bottom, side and top heating. The objective is not to perform 
detailed parametric calculations but rather to analyse the timewise complex flow patterns and 
thermal behaviour of the melt. In the next section, the physical model and the numerical 
procedure are presented. Results are then reported for the time evolution of the flow patterns and 
isotherm maps and for the temporal variation of the average Nusselt numbers and molten volume 
fractions. The effect of the Rayleigh number on the melting process is also examined. 

PHYSICAL MODEL AND BASIC EQUATIONS 

The PCM is contained in a cylindrical enclosure of height H and radius ra(Figure l(a)). The PCM 
is assumed to be initially at its fusion temperature Tf, eliminating the need for solution of the 
energy equation in the solid. At time t = 0, the surface temperature of the entire capsule is raised 
impulsively to a prescribed temperature above the fusion point, T, > Tf. As a result, inward 
melting is triggered. It is assumed in the analysis that the thermophysical properties of the PCM 
are independent of temperature. The fluid is Newtonian, incompressible, and the Boussinesq 
approximation is valid, i.e. liquid density variations arise only in the buoyancy source term, but 
are otherwise neglected. Fluid motion and heat transfer in the melt are laminar and symmetrical 
about the vertical centreline. Volumes changes and viscous dissipation are neglected. 

Under the foregoing assumptions, the partial differential equations governing the transport of 
mass, momentum and energy are 

continuity equation 

momentum equations 

energy equation 
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Figure 1. Schematic representation of the cylindrical capsule and grid transformation 

Furthermore, since no heat conduction occurs in the solid phase, all heat transferred to the 
interface is utilized for melting. An energy balance for the interface yields the following condition 
for the moving boundary: 

where n is a unit vector normal to the interface. 
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Introducing a length scale ro,  a time scale r $ / a  and a temperature scale ( T ,  - Tf), the above 
equations are non-dimensionalized with the following dimensionless variables: 

r z U T O  

r0 r0 a 
R = -  z=-, u = -  

c AT at 
, ~ = s t e F o = L -  V T Ra = ___ a av h r$’  Pr = -, 

Furthermore, since pressure is not a variable of primary interest in the present context, the 
momentum equations are reformulated in terms of a stream function $ and vorticity o defined as 

av au 
dR a Z  1 

o=--- (9) 

Taking the curl of the momentum equations to eliminate pressure and using the dimensionless 

vorticity 

variables (6), the governing transport equations (1)-(5) become 

ae 
+-=Pr V 2 w - -  + PrRa- ( l) dR 

Ste- + - am a(uw)  a(vo) 
az a? dR 

stream function 

energy equation 

ae ae ao 
a R  aR az ste- + u- + v- = v2e 

interface energy equation 

TRANSFORMED EQUATIONS 

As melting proceeds, the phase front moves inward while being distorted by the non-uniform heat 
fluxes along its surface. As a result, the shape of the solid-liquid interface will not coincide, in 
general, with the grid nodes of a fixed cylindrical grid. It is then difficult to implement the 
discretized boundary conditions and attempts to solve the resulting finite-difference equations 
may fail to yield accurate and convergent solutions. 
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To overcome these difficulties, body-fitted co-ordinates are considered. The conservation 
equations (10)-(13) are cast from the original cylindrical grid ( R , Z )  to a curvilinear grid ( 5 , ~ )  
(Figure l(b)). The resulting equations are more complicated, but their boundary conditions are 
now specified on straight boundaries and the computational grid is rectangular and uniformly 
spaced. Performing this transformation, equations (lOH12) become in the (5 ,  q) grid 

V 2 *  = s, 
ae -ae -ae 
ar a t  aq 

Ste-  + u- + v- = V2e + so 

where u" and are contravariant velocities expressed by 

u" = tru + 5,v 
v = qru + qzv 

Vz is the transformed Laplacian operator in cylindrical co-ordinates. 
The energy balance equation (13) for the moving interface becomes 

ae 
- - 5 r  

- aR 
a7 at 
- _  

ae 
- - 5, 

az 
aT a t  

- -- 

The boundary conditions in the computational space are: 

t = tmin and 5 = tmax 

av 
a< 

u=o, - = o  
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ae 
a t  * = o ,  - = o  

o = o  

u=o, v = o  
$ = O ,  0 = 1  

o = V r V ,  - V J ,  

u=o, v = o  
* = o  8 = 0  

o = VrV, - V Z U ,  

The no-slip boundary condition is imposed on the surface of the enclosure and the interface. 
A slip boundary condition is imposed on the symmetry axis. 

NUMERICAL PROCEDURE 

The governing equations (14H16) and (20) and (21) with the corresponding boundary conditions 
are solved numerically with a finite-difference method. A first-order forward difference approxi- 
mation is used for the time derivatives. The diffusion terms are replaced by second-order central 
difference approximations. Special attention is paid, however, to the convection terms. It is well 
known that the use of second-order central difference approximations for these terms may 
produce unstable and divergent solutions for high Peclet cell numbers (or high Rayleigh 
numbers). l o  Although the use of a first-order upwind scheme may eliminate these wiggly 
solutions, it introduces truncation errors and produces significant artificial diffusion. In the 
present study, this problem is overcome by adoptiqg a second-order upwind scheme. 

The proposed scheme has the following form: 

where A", B", C", D" and E" are functions of u. These coefficients are defined in Appendix 11. The 
resulting finite-difference scheme for the vorticity (14) and temperature equations (16) has the 
form 

Expressions for the coefficients in equation (23.) may be found in Reference 11. This finite- 
difference equation is solved by means of an alternating Penta-diagonal matrix algorithm.' ' For 
the stream function (equation (15)), only second-order finite differences are used and the resulting 
discretized equation is solved by the alternating direction implicit (ADI) procedure proposed by 
Roache. 'O 
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The overall calculation procedure consists of the following steps: 

1. 

2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 

Set the initial values of all the variables U i , j ,  V i , j , m i , j  and $ i , j  to zero. The initial 
temperatures are set to zero everywhere in the field except for the nodes at heated 
boundaries which are set to 1. 
Set the initial boundary grid nodes for the physical domain. 
Generate a new grid for the physical domain. 
Calculate all geometric coefficients for the transformed equations. 
Compute mi,j with the current values of Ui,j ,  Vi , j ,  $i , j  and O i , j .  
Compute $ i , j  with the updated values m i , j .  
Compute Ui, j ,  6,  with the updated values $i, and velocity boundary conditions. 
Compute t9i , j  with the updated values U i , j  and K , j .  
Check for convergence. If satisfied, go to the next step; otherwise, go back to step 5. 
Check for time to stop. If positive, stop; otherwise, go to the next step. 
Update xo, yo, wo and O0 for the next time step. 
Calculate the new interface position. 
Perform a rezoning procedure. 
Go back to step 3 to begin computations for the next time step. 

Steps 3, 9 and 13 need further explanations. In step 3, a new grid is generated from the 
numerical solution of a set of two coupled non-linear elliptic partial differential equations for the 
cylindrical co-ordinates as a function of the curvilinear co-ordinates. This procedure is commonly 
used for mapping complex geometries and details concerning its implementation may be found in 
References 1 1 and 12. 

In step 9, convergence is declared when 

5:  IIRII < 10-4 (24) 
i j  

where 11 R I( is the residual for the continuity equation and when 

where f denotes the vorticity and temperature and k denotes the iteration number. 
According to the energy balance equation (13), the local velocity of the interface should be 

locally orthogonal to the interface. Generally, the melting is non-uniform along the interface 
because of natural convection. Therefore, the interface can become curved as the boundary is 
moving. If the interface becomes locally convex, the moving interface grid points have a tendency 
to move towards their reflex centre. As melting proceeds, the generated grids can be distorted and 
eventually the grid nodes may overlap. To overcome these difficulties, an implicit rezoning 
procedure is employed in step 13. Once the interface is determined at time level T + AT, a spline 
interpolation procedure is used to redistribute the boundary grid points at equal arc length 
intervals along the interface. Thereby, a proper grid network system is available for carrying out 
the calculations at time T + AT. 

RESULTS AND DISCUSSION 

The foregoing computational methodology has been thoroughly tested for natural convection 
dominated melting around a vertical heated cylinderI2 and within a vertical cylinder heated from 
below.g The numerical predictions were tested against other numerical solutions and experi- 
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mental data. These validation analyses are reported in References 9, 11 and 12 and need not be 
repeated here. 

To avoid computational difficulties at time z = 0, a very thin uniform thickness melt layer 
parallel to the heated bottom, top and side walls was assumed to exist initially. The layer 
thickness was chosen such that the Rayleigh number based on this initial gap width was small 
enough so that pure conduction could be considered as the prevailing mode of heat transfer. 

Following a grid refinement study and as a compromise between cost and accuracy, the calcu- 
lations presented here were done with a grid size of 11 x 31 non-uniformly distributed nodes. This 
makes it possible to concentrate several grid points in the critical regions near the heated surfaces 
and near the solid-liquid interface where large temperature and vorticity gradients prevail. 
A constant time step of lop3 was utilized in order to ensure small interface motion from one time 
step to the next. No attempts were made to optimize (increase) the time step as melting proceeds. 

As a typical example, Figure 2 shows the time evolution of the streamlines and isotherms for 
a case with Pr = 7.0, Ste = 0.1, A = 2.0 and Ra = lo5. The increments between the streamlines 
and the isotherms are constant between their minimum and maximum values. At early time 
z < 0.01 (Figure 2(a)), heat transfer in the melt zone is predominated by conduction, i.e. the 

I ! I I 

(a) r=0.01 (b) r=0.02 

i i ! ! 

I I ! ! 
(c) z=0.03 (d) 7=0.04 

! ! I I 

(el r=0.05 (0 r=0.06 

Figure 2. Time evolution of the streamlines (left) and isotherms (right) for Ra = lo5 
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isotherms remain parallel to the heated walls, and the solid-liquid interface moves uniformly 
inward from the surface of the enclosure. The isotherms at the top and bottom of the cavity are 
horizontal and no convective flow exists. In the upper part of the capsule, heat is transferred 
through the melt from the top heated surface to the bottom cold melt front. As a result, layers of 
lighter fluid rest on layers of heavier fluid and the flow is stagnant and in a stable condition. On 
the other hand, at the bottom of the enclosure heat is transferred through the melt from the 
bottom heated surface to the top cold interface. In this case, however, the situation is potentially 
unstable as layers of cold and denser fluid adjacent to the solid-liquid interface lie above layers of 
hot and lighter fluid near the bottom heated wall. For as long as the temperature gradients 
remain perfectly vertical, the source term for the vorticity equation (equation (19)) is null and the 
flow is stagnant. In the melt layer near the vertical heated wall, a weak convective recirculating 
flow has already established itself. Along the vertical cylinder surface, heat is transferred to the 
melt and the fluid moves upward. Along the vertical phase front, heat is transferred to the 
interface and the fluid descends. At z = 0.02 (Figure 2(b)), the melt layer around the solid phase is 
thicker and the unstable thermal situation at the bottom of the enclosure leads to a Bknard 
clockwise recirculating cell. Due to the long counterclockwise recirculation bubble along the side 
of the cylinder, it is observed that the onset of Bknard convection occurs at a much earlier time 
than that for the case of bottom heating only.' At z = 0.03 (Figure 2(c)), a second Bknard 
counterrotating cell has appeared in the bottom layer. As melting proceeds, the Benard cell at the 
right, entrained by the lateral counterclockwise recirculation bubble, grows faster and stronger 
than the left one (Figure 2(d)-2(e)). As a result, the left cell is pushed leftward and shrinks until it 
vanishes completely (Figure 2(f)). 

20 
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0 0.01 0.02 0.03 0.04 0.05 0.06 

Dimensionless time 

Figure 3. Timewise variation of the average Nusselt numbers at the bottom (NuB), at the vertical (Nu,) and at the top 
( N u T )  surface for Ra = lo5 
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The timewise variations of the average Nusselt number at  the bottom (NuB), at the side (Nu, )  
and at the top (NuT) of the cylinder are depicted in Figure 3. These Nusselt numbers were 
calculated from the converged temperature field at each time step. The results display a rapid 
decrease in the heat transfer rate at  the early stages of melting which is indicative of transient heat 
conduction. As soon as natural convection sets in the lower part of the enclosure with the 
appearance of Benard cells (z < 0.02), the heat transfer rate, i.e. NUB, starts increasing. As time 
passes, the melt layer between the vertical cylinder surface and the vertical phase front expands 
and the thermal resistance across this layer increases. This results in a constant decrease in the 
magnitude of Nus. On the other hand, it is seen that the Nusselt number at the top, NuT, decreases 
monotonically to zero. This is the result of the gradual decrease of the temperature gradients in 
the upper region of the capsule generated by the continuous upward flow along the vertical 
heated surface. As the phase front moves away from the top heated surface, the melt region at the 
top of the cylinder becomes an isothermal zone as shown by the isotherms in Figure 2(f). 

Figure 4 shows the time evolution of the streamlines and isotherms for Ra = lo6 with the other 
parameters remaining unchanged. Due to the stronger convective motion inside the melt layer 
along the vertical heated wall, Benard convection appears much earlier (z < 0.004). The mo- 
mentum of the clockwise recirculating Benard cell at the right is large enough to create and 
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Figure 4. Time evolution of the streamlines (left) and isotherms (right) for Ra = 10" 
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Figure 5. Timewise variation of the average Nusselt numbers at the bdttom (Nu,), at the vertical (Nus) and at the top 
(Nu,) surface for Ra = lo6 

0.0 0.01 0.02 0.03 0.04 0.05 0.06 

Dimensionless time 
Figure 6. Temporal variation of the molten volume fraction 
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entrain two additional cells (Figure 4(c)). As a result, the isotherms are considerably perturbed 
and so are the heat transfer rates and the time evolution of the phase front at  the bottom of the 
cylinder. Once again, as melting proceeds, the melt layer at the bottom expands and the Btnard 
cell at the right grows faster and stronger than the left ones. The left cells are pushed leftward and 
shrink until they vanish (Figure 4(d)). The remaining clockwise recirculating cell at the bottom 
then starts decreasing as the lateral counterclockwise recirculating cell grows in size (Figure 4(e)). 
Eventually the latter engulfs the former (Figure 4( f)). 

Figure 5 illustrates the corresponding timewise variation of the average Nusselt numbers. Due 
to the more intense convective motion, the monotonic decrease of NuT is faster than that for the 
previous case. The onset and the development of Btnard convective cells is clearly seen as NuB 
increases from z = 0.01 to z = 002. For z 2 002, these cells merge to become one and NuB starts 
decreasing again. The qualitative behaviour of Nus is the same as for the previous case. 

The temporal variation of the molten volume fraction was also determined from a numerical 
integration of the melt cavity volume and is shown in Figure 6. It is seen that this fraction 
increases almost linearly with time once the convective motion is well established throughout 
the melt. 

CONCLUDING REMARKS 

A numerical study of natural convection dominated melting within an isothermal vertical 
cylinder has been conducted. A robust computational methodology based on body-fitted co- 
ordinates was adopted for handling the complex motion and irregular shape of the time-varying 
solid-liquid interface. Results have shown that heat transfer for the top heated surface is 
predominated by conduction. The Nusselt number at the top surface decreases monotonically to 
zero as melting progresses, showing that no heat is transferred across the top layer once natural 
convection is fully developed in the melt. The highest heat transfer rates are observed for the 
bottom surface with the onset and development of BCnard convective cells. Due to the convective 
motion of the flow along the vertical heated wall, the onset of Btnard convection occurs at a much 
earlier time than that for the case of melting within a cylinder heated from below. 
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APPENDIX I 

Nomenclature 

A aspect ratio ( H / r o )  
c p  specific heat 

Fo Fourier number (crtlr;) 
g acceleration of gravity 

9" 9,' + S I  
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h 
H 

k 
n 

M 
N 

Nu 
P 
P 

PCM 
Pr 

4 
Q 
r 
10 
R 

Ra 
Ste 

t 
T 

u, 0 
u, v 
0, B 

Vf 

z 

J -  

Z 

latent heat of fusion 
height of cylinder 

thermal conductivity of PCM 
unit vector 
number of nodes (axial direction) 
number of nodes (radial direction) 
Nusselt number ( q / ( H k (  T,  - T f ) ) )  
pressure 
forcing function in grid generation 
phase change material 
Prandtl number v/cI 
heat transfer rate 
forcing function in grid generation 
radial co-ordinate 
radius of the cylinder 
dimensionless radius ( r / ro)  
Rayleigh number (g/3r:( T,  - Tf)/av)  
Stefan number (cp(Tw - Tf) /h )  
time 
temperature 
radial and axial velocities 
dimensionless velocities (ur,/a, uro/a)  
contravariant velocities 
molten volume fraction 
axial co-ordinate 
dimensionless axial co-ordinate (z/ro) 

5 r V z  - 5 z V r  

Greek letters 
CI thermal diffusivity 

thermal expansion coefficient 
5, q co-ordinates in transformed plane 

5, r , /J  
5, - rIJJ 
V r  - z t l J  

V z  r d J  

5 r  5 r r r  + 5zz r  

V r  V r r r  + V r Z r  
6 dimensionless temperature (( T - Tf) / (Tw - Tf)) 
v kinematic viscosity 
z dimensionless time (Ste Fo)  + stream function 
o vorticity (av /aR  - au/az) 
V2 Laplacian in cylindrical co-ordinates 
? transformed Laplacian 

Subscripts 
f fusion 

w cylinder wall 
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APPENDIX I1 

Coefficients in equation (22) are 
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